

YI J I N ELECTRONI CS CO. , LTD

产品承认书

R433.9

'Rt qf wev'cempqy ngf i o gpv

Rons

dient客户:

Product产品:

Model型号:

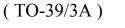
Tabulation 制表:

"Date日期:

声表面谐振器

R433.92M TO-39

Production


2011-5-1

承認結果	客戶簽名	客戶承認章	日期	備注
CONCLUSION	SIGNATURE	STAMP	DATE	REMARK
合格				
ACCEPT				
不合格				
REJECT				

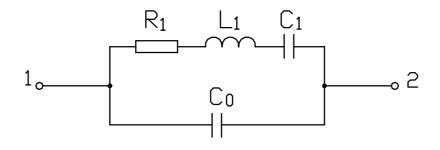
审核:_____

(请盖公章)

1. Package Dimension

mm

Pin No. Function


- 1. Input
- 2. Output
- 3. Ground

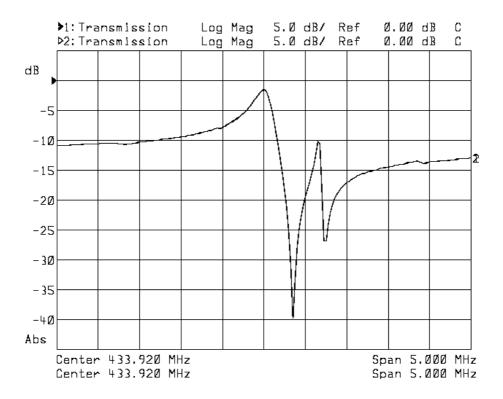
2. Marking

Y J R433.92 1. Color: Black or Blue

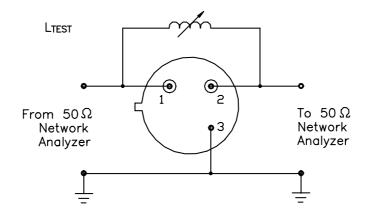
- 2. D: Manufacture's logo
- 3. R1: One-port SAW Resonator
- 4. 433.92: Center Frequency (MHz)

3. Equivalent LC Model

4. Performance


4.1 Maximum Rating

DC Voltage V _{DC}	10V
AC Voltage V _{PP}	10V (50Hz/60Hz)
Operation Temperature	-40 °C to +85°C
Storage Temperature	-45 °C to +85°C
RF Power Dissipation	0dBm


4.2 Electronic Characteristics

I tem		Units	Minimum	Typical	Maximum
Center Frequency		MHz	433.845	433.920	433.995
Insertion Loss		dB		1.2	2.5
Quality Factor	Unloaded Q		_	11,000	
	50 Ω Loaded Q			2,000	
Temperature	Turnover Temperature	°C	_	25	
Stability	Turnover Frequency	KHz		fo	
	Freq. Temp. Coefficient	ppm/°C ²	_	0.032	
Frequency Aging		ppm/yr		< <u>+</u> 10	
DC Insulation Resistance		MΩ	1.0	_	
	Motional Resistance R ₁	Ω		18	26
RF Equivalent	Motional Inductance L ₁	μH		86	
RLC Model	Motional Capacitance C ₁	fF		1.56	_
	Shunt Static Capacitance Co	pF	1.7	2.0	2.3

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be $25\pm2^{\circ}$ C. However, the measurement may be carried out at 5°C to 35°C unless there is a dispute.

5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s^2 , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80° C for 30 minutes \rightarrow 25°C for 5 minutes \rightarrow -25°C for 30 minutes)than kept at room temperature for 2 hours.

5.7 Humidity Test: The components shall remain within the electrical specifications after being kept at the condition of ambient temperature 40 ± 2 °C, and 90~95% RH for 48 hours, then kept at room temperature and normal humidity for 2 hours.

5.8 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 °C for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.9 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}C\pm5^{\circ}C$ for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.